Skip to main content

Pallets and Extrinsics

Allfeat is built using Substrate, a modular framework to efficiently build blockchains. Substrate's FRAME development environment provides modules called pallets and support libraries that you can use, modify, and extend to build the runtime logic to suit the needs of the blockchain. You can explore Substrate's FRAME pallets on this dedicated page.

Within each functional pallet on the blockchain, one can call its functions and execute them successfully, provided they have the permission to do so. Because these calls originate outside the blockchain runtime, such transactions are referred to as extrinsics. Extrinsics normally contain a signature, some data to describe if the extrinsic has passed some validity checks and a reference to the pallet and call that it is intended for. For example, the Staking pallet contains all functions related to staking. A nominator can bond funds and nominate validators by issuing the respective extrinsics. Some extrinsics might also trigger an event on the chain such as a reward payout to the nominators.

Extrinsics (a.k.a. Types of Transactions)

Now that we introduced the term extrinsic, let us dive deeper and understand what extrinsics really are. Extrinsics can be one of 3 distinct types:

  • Signed transactions: these must contain the signature of the account sending the inbound request to the runtime. With signed transactions, the account used to submit the request typically pays the transaction fee and must sign it using the account's private key.
  • Unsigned transactions: these don't carry any information about who submitted the transaction, since the format of this type of transaction doesn't require a signature. You can define what conditions must be met for such a transaction to be valid.
  • Inherents: are a special type of unsigned transaction made by block authors which carry information required to build a block such as timestamps, storage proofs and uncle blocks.

Here are some key differences between the different types of extrinsics:

  • Contrary to signed transactions, unsigned transaction types require implementing custom validation logic which can consume more resources for checking validity compared to signed transactions.
  • Unsigned transactions have no economic deterrent to prevent spam or replay attacks, so custom logic must account for protecting the network from these types of transactions being misused.
  • Inherents exist to address the need of adding some data to a block, whereas signed or unsigned transactions exist to potentially change the state of the blockchain.

Verifying Extrinsics

danger

Do not sign a transaction if you can't verify what you are signing, or you suspect you might be signing a different extrinsic than the one intended.

Verifying the extrinsic you are signing can take some more time before signing for a transaction, but it allows you to add an extra security step. There are a multitude of possible attacks that will prevent you to send funds to the desired destination account (see below).

How do Attacks look like

In general, an attacker would make you think you are signing an extrinsic A when in reality you are signing an extrinsic B. An Attack might come from:

Clipboard Memory

info

For a more detailed read about clipboard memory attacks see this article.

This is a common attack. The clipboard memory is that memory on you computer dedicated to copy-paste operations. There is malicious software that can be remotely installed on your computer and that can detect when a cryptocurrency address is copied. For example, you want to send funds to Address A (belonging to you) but after copying address A, a malicious software swaps that address with Address B (belonging to an attacker). This attack can be prevented by checking the receiver address before signing. Failing to do so could result in loss of the funds.

Malicious Website/dApp

This is a common attack that can happen if you are interacting with a malicious site (dApp). In this scenario you want to perform Extrinsic A on the website, but the dApp will send Extrinsic B to the extension for signing. In this case the extension will show Extrinsic B. If you are using a Ledger device you have a second layer of verification, as it will also display Extrinsic B.

Malicious Browser Extension

This scenario can happen if you have downloaded a malicious extension or a trusted extension, like the Talisman Extension, from a non-trusted source. In this scenario the extension will display that you will sign for an Extrinsic A, but in the background will execute Extrinsic B. If you are using a Ledger device this attack can be detected because you will be able to see Extrinsic B on the screen of your Ledger device.

Corrupted metadata

This attack is least common and might result in signing a non-intended extrinsic without the possibility of verifying it. Before authorizing the metadata update check who is requesting it.

Corrupted QR-code (Parity Signer)

This is a sub-case of the malicious dApp scenario. If your account is on Parity Signer the extrinsic will be displayed as a QR code, instead of the extension showing its details and you need to verify it on the device. The corrupted QR code will make you sign for an Extrinsic B when you want to sign for Extrinsic A. This will be showed in the Signer app and a careful user will notice it. If the metadata in the Signer is already incorrect (or the Signer is corrupted) there is the risk of signing a non-intended extrinsic without the possibility of verifying it.

Defense against Attacks

danger

If you can't verify the extrinsic or you suspect you are signing something different than what you intended, don't sign it!

To avoid being victim of an attack:

  • Use only trusted extensions, sites and software in general.
  • Use cold storage options (Ledger, Signer) and verify on them. Trust what these devices tell you over what is shown in the app or the browser extension.
  • Update Signer metadata only from trusted sources (or do it yourself).
  • Accept metadata updates for the extension only from trusted apps.